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cyclopropane systems and that [C-C/C-C] cycloreac-
tion modes, though absent in some cases,14 are very 
much in evidence in the thermal isomerization of 2,4-
dehydrohomoadamantane. 
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An Energetically Concerted Reaction Profile for the 
Thermal Conversion of Cyclopropane to Propene and 
for Related Cycloreactions 

Sir: 

Cyclopropane isomerizes thermally to propene.1 

Were this reaction to be discovered today it would be 
classed as a „2 + „2 cycloreaction; the stereochemistry 
of the process and its relevance to orbital symmetry 
theory would be high priority topics for investigation. 

Chambers and Kistiakowsky2 recognized two distinct 
mechanistic possibilities: homolysis of a carbon-
carbon single bond to give a "radical," followed by a 
hydrogen migration; a direct isomerization according 
to the "1,2-unsaturation" proposals of Kassel.3 In 
time, the trimethylene diradical mediated two-step 
formulation gained a favored status relative to the con­
certed one-step mechanism, thanks largely to demon­
strations that cyclopropanes could be thermally epimer-
ized. and to suppositions that epimerizations and struc­
tural rearrangements shared a common reaction profile.4 

Orbital symmetry theory has prompted theoretical 
efforts to learn whether the 0,0-trimethylene diradical 
intermediate is formed preferentially in a conrotatory 
or disrotatory fashion, but it has not incited a chal­
lenge to the diradical schema for cyclopropane thermal 
chemistry. 

We have found that two conformationally restricted 
cyclopropanes, 2,4-dehydroadamantane and 2,4-dehy-
drohomoadamantane, rearrange smoothly in „2 + „2 
processes to give protoadamantene and homoadaman-
tene5 even though these polycyclic substrates would 
have severe difficulty attaining the 0,0-trimethylene di­
radical geometry. In the second example, both [C-C/ 
H-C] and [C-C/C-C] rearrangement modes were 
demonstrated through a carbon-13 labeling experi­
ment.6 In simplest form, these isomerization modes 
correspond to the reactions 1 -»> 2 and 1' -»• 2 ' . Geo­
metrical considerations appropriate to the dehydro-
homoadamantane system make a suprafacial, supra-
facial reaction stereochemistry seem most plausible. 
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These experimental results prompt reconsideration of 
mechanistic form for such „2 + „2 cycloreactions (1 -»• 
2, 1' -* 2 ' ; R,R' = H or alkyl), and recognition of the 
possibility that they may be energetically concerted6 

isomerizations. 
Elongation of a cyclopropane bond causes a mono-

tonic increase in the energy of the ground state con­
figuration (3).7 Such bond lengthening is sufficient 
to make the ground (3) and lowest energy doubly ex­
cited (4) configurations comparable in energy; extended 
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Huckel9 and ab initio SCF-MO10 treatments both 
predict a crossing of these two configurations at an 
angle d of 115 to 125°. This circumstance makes con­
figuration interaction necessary for adequate descrip­
tions of the distorted molecule and permits the elongated 
bond to react as an antisymmetric two-electron compo­
nent.6 

One antisymmetric and one symmetric two-electron 
bond may undergo thermal cycloreaction with supra-
facial, suprafacial stereochemistry concertedly. Gain­
ing antisymmetric character through molecular distor­
tions is then the basic prerequisite a cyclopropane C-C 
bond must satisfy to participate in state-conservative 
„2 + „2 cycloreactions when orbital symmetry allowed 
paths are geometrically awkward and energetically pro­
hibitive. Unconstrained cyclopropanes may gain anti­
symmetric character in a C-C bond through bond 
elongation or elongation plus rotations of the terminal 
methylene moieties.9 

The same pattern—thermal chemistry with state con­
servation in energetically concerted processes—may be 
followed as well in cycloreactions involving cyclopro­
pane C-C bonds and proximate double bonds, such as 
the vinylcyclopropane to cyclopentene conversion. 

The hypothesis advanced here is a new instance of a 
known phenomenon; an orbital symmetry disallowed 
reaction may be energetically concerted and state con-
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servative through the consequences of configuration 
interaction.611-16 It accounts for a variety of thermal 
structural isomerizations of cyclopropanes in a unified 
and theoretically plausible way. It does not provide a 
mechanism for the thermal epimerization of cyclopro­
panes, a reaction shown by many unconstrained cyclo­
propanes which is most simply treated as an indepen­
dent competitive process. "•18 
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Stereoelectronic Control in the Photorearrangement of 
a-Chloro Ketones. Mechanistic Studies in 
Organic Photochemistryl 

Sir: 

The current interest in photolysis of organic halides 
has prompted us to communicate our results on the 
photochemistry of a series of a-chloro ketones. Gen­
erally, irradiation of a-halo ketones leads to the pho­
tolysis of the carbon-halogen bond.2-6 Attempted 
mechanistic rationales have concentrated on two possi­
ble modes of C-X bond breaking, (1) homoiytic2'46 

and (2) heterolytic,366 based on the nature of the prod­
ucts obtained (radical abstraction or coupling vs. 
nucleophilic substitution). Recently, examples of in­
tramolecular photorearrangements of a-halo ketones 
suggest that bridging occurs between the incipient 
electron-deficient carbon and a nonconjugated ir-
system.6'6 

Four chloro ketones (1-4) were chosen to investigate 
the influence of aromatic vs. double bond participation7 

and the stereoelectronic requirements8 for rearrange-
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ment. Irradiation of exo-2-chlorobicyclo[2.2.2]octen-
3-one (I)9 in methanol at 300 nm gave encfo-7-carbome-
thoxy-A2-norcarene (5)10 in 55 % yield as the only major 
product.11 Similarly, photolysis of endo-l-chloro-
benzobicyclo[2.2.2]octadien-3-one (3)9 gave the A2>4-
norcaradiene rearrangement product 612 in 60% yield 

1 (exo-Cl) 
[2(endo-Cl)] 

3 (endo-Cl) 
[4 (exo-Cl)] 
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along with minor amounts of naphthalene (7, 13 %) and 
methyl 1-naphthylacetate (8, 3%). 

Contrasting results were found when exo-2-chloro-
benzobicyclo[2.2.2]octadien-3-one (4)9 was irradiated. 
The relative yield of the A2'4-norcaradiene (6) dropped 
significantly to 34% and the naphthyl ester (8) yield 
increased to 26%. Although the A2'4-norcaradiene 
remains the major product, the competitive pathway to 
8 is of equal importance in this rearrangement. Even 
more striking are the contrasting results for the endo 
isomer 2 which gave no A2-norcarene (5) under identical 
conditions.11 

The major products from chloro ketones 1, 3, and 4 
probably arise from a carbon skeleton reorganization 
described in Scheme I. The results from the product 

Scheme I. A Possible Rearrangement Pathway for 
Chloro Ketones 1 and 3 
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studies clearly indicate a stereoelectronic influence from 
the backside of the carbon-chlorine bond by the carbon-
carbon double bond at some stage prior to product 
formation.13 

Table I gives the results from quantum yield and 
multiplicity studies of chloro ketones including exo-2-
chloronorbornenone (9).6 Unfortunately, the endo 
isomer was not studied for comparison of stereoelec-

(9) Synthetic details will be given in our full paper. AU new com­
pounds gave satisfactory elemental analyses. 
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